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Abstract. This work describes how the formalization of complex network concepts in terms of discrete
mathematics, especially mathematical morphology, allows a series of generalizations and important results
ranging from new measurements of the network topology to new network growth models. First, the con-
cepts of node degree and clustering coefficient are extended in order to characterize not only specific nodes,
but any generic subnetwork. Second, the consideration of distance transform and rings are used to further
extend those concepts in order to obtain a signature, instead of a single scalar measurement, ranging from
the single node to whole graph scales. The enhanced discriminative potential of such extended measure-
ments is illustrated with respect to the identification of correspondence between nodes in two complex
networks, namely a protein-protein interaction network and a perturbed version of it.

PACS. 02.70.Rr General statistical methods – 02.10.Ox Combinatorics; graph theory – 89.75.Hc Networks
and genealogical trees

1 Introduction

One of the unavoidable consequences of the fast pace of
developments in the new area of complex networks [1–4]
is that, while many impressive and relevant concepts
and perspectives have been identified and well-developed,
some interesting issues have received relatively little at-
tention. Despite the major advances achieved by using
powerful tools from theoretical physics (e.g. [1,4]), rel-
atively little attention has been given to the treatment
of complex networks in terms of discrete mathematics
and mathematical morphology, which are themselves well-
established investigation fields. Developed mainly by J.
Serra and collaborators [5], the area of mathematical mor-
phology is aimed, through strict mathematical formaliza-
tion, at representing and analyzing the geometrical and
topological features of discrete mathematical structures,
especially regular lattices such as those underlying digital
images. Mathematical morphology is strongly founded on
the discrete operations of complement, dilation and ero-
sion, which can be composed in order to obtain a whole
series of new operators with specific properties. At the
same time, previous developments by L. Vincent and H.
Heijmans [6,7] have shown how the mathematical mor-
phology framework can be extended to graphs, allowing
not only the precise mathematical representation and ma-
nipulation of those general structures, but also the im-
mediate access to the wealthy of existing results from
mathematical morphology. The present article reports on
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how the application of discrete mathematics, especially
mathematical morphology [5] and distance-oriented con-
cepts [6–8], bears the potential not only for formalization,
but also to obtain a series of new concepts and results.
In particular, by considering the dilations of subnetworks
of a network Γ and extending the concepts of numbers
of neighbors [9–12] and hierarchical node degree [13], we
show that the traditional concepts of node degree and clus-
tering coefficient [1,4] can be generalized in two important
ways. First, the concept of subnetwork dilation paves the
way to generalize the degree and clustering coefficient to
any subnetwork of Γ , and not only their specific nodes as
adopted in the complex network literature. Such a concept
therefore allows us to speak of the degree of subgraphs of
special interest, such as cycles, sets of hubs, or the max-
imum spanning tree of a given complex network. Second,
the consideration of a series of subsequent dilations, to-
gether with the respectively induced distance transform
and rings, allow the further extension of the degree and
clustering coefficient so that a signature, instead of the
single scalar traditional measurements, is obtained which
can provide information about the network connectivity
from the node to the whole graph scales. The potential
of such hierarchical extensions for discriminating the con-
nectivity around each node (or subgraph) can be readily
appreciated by considering the fact that several nodes in
a complex network will have the same degree and cluster-
ing coefficient, but very few nodes will share such values
calculated for a series of subsequent neighborhoods. Such
an interesting feature of the generalized measurements is
illustrated in the present article with respect to protein-
protein interaction networks. A perturbed version of this
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Fig. 1. Original network containing a subnetwork (a), identified by wider-border nodes, and its respective complement (b),
dilation (c), erosion (d), opening (e), closing (f), and distance transform (g), with the distances identified by the node border
width. The generalized Voronoi tessellation of the two connected components of the subnetwork in (a) is shown in (h).

network is obtained by a random rewiring and the hi-
erarchical measurements are compared so that the most
similar nodes are identified.

2 Basic concepts

A network Γ without multiple edges is a discrete structure
composed of a set of nodes V (Γ ) and a set E(Γ ) of edges
(u, v) established between specific pairs of nodes of V (Γ ),
so that the network Γ is represented as Γ = (V, E). As
we consider undirected networks without loops, it follows
that (u, v) ⇐⇒ (v, u) and (u, u) /∈ E(Γ ). Such a net-
work can be conveniently represented in terms of its re-
spective adjacency matrix K such that each edge (u, v) is
represented by making K(u, v) = K(v, u) = 1, while the
absence of edge is indicated by zero value. A subnet-
work ξ of Γ is any network such that V (ξ) ⊆ V (Γ ) and
E(ξ) ⊆ {(u, v)|(u, v) ∈ E(Γ ) and u, v ∈ V (ξ)}. Figure 1a
illustrates a network Γ and one of its many subnet-
works ξ, identified by the wider-border nodes and wider
edges. Particularly interesting subnetworks of a network Γ
include its hubs, outmost nodes (i.e. nodes with low
degree), as well as its cycles. Special cases of subnet-
works of Γ include the empty network (V = ∅, E = ∅),
where ∅ stands for the empty set, networks contain-
ing an isolated node u Γu = (V = {u ∈ V (Γ )} , E = ∅),
and the own original network Γ . The complement of
a subnetwork ξ of Γ is the subnetwork ξ′Γ of Γ such
that V (ξ′Γ ) = {u|u ∈ V (Γ ) and u /∈ V (ξ)} and E(ξ′Γ ) =
{(u, v)|(u, v) ∈ E(Γ ) and u, v ∈ V (ξ′Γ )}. Figure 1b illus-
trates the complement ξ′Γ of ξ in Γ . A subnetwork is con-
nected if any of its nodes can be reached from any of its
other nodes. Two subnetworks ζ and ξ of Γ are connected
if it is possible to reach a node of ξ from a node of ζ,
and vice-versa. The maximal connected subnetworks, in
the sense of including the largest number of nodes, of a
network are called connected components. The subnetwork
in Figure 1a is not connected but contains two connected
components. The degree of a node u of Γ , hence k(u), cor-
responds to the number of edges attached to that node.

The degree of a subnetwork ξ of Γ , hence k(ξ), is defined
as the number of edges implied by the dilation of ξ, i.e.
those edges connecting ξ to the rest of Γ . For instance, the
degree of the subnetwork ξ in Figure 1a is 12. The out-
most set of a subnetwork ξ of Γ is the set of nodes Ω(ξ)
which have unit degree. For simplicity’s sake, such nodes
are henceforth referred to as outnodes. The 1-neighborhood
of a node u of Γ , henceforth represented as n1(u), is the set
of nodes of Γ which are attached to u, plus node u. This
concept can be immediately extended to express the neigh-
borhood of a subnetwork ξ of Γ , given as the set of nodes
of Γ which are connected to ξ plus the nodes in V (ξ).

3 Complex network morphology

The dilation of a subnetwork ξ of Γ is defined as the sub-
network δ(ξ) of Γ having V (δ(ξ)) = n1(ξ) as its set of
nodes while its set of edges include the edges of Γ found
between the nodes in n1(ξ). The erosion of ξ, represented
as ε(ξ), is a subnetwork of Γ which can be defined as the
complement of the dilation of ξ′Γ , i.e. ε(ξ) = (δ(ξ′Γ ))′Γ .
Observe that the dilation or erosion of Γ yields Γ as re-
sult. Figures 1c and 1d ilustrates the dilation and erosion
of the subnetwork ξ in a, respectively. Observe that the
erosion eliminated one of the connected components of ξ.
Generally, δ(ε(ξ)) �= ε(δ(ξ)), i.e. the dilation can not be
used to undo an erosion, and vice-versa. Observe also that
a subnetwork ξ is necessarily contained or equal to its re-
spective dilation, while the erosion of a subnetwork ξ is
necessarily contained or equal to itself. The d-dilation of
a subnetwork ξ is defined as the subnetwork obtained by
dilating d times the subnetwork ξ, i.e.:

δd(ξ) = δ(δ(. . . (ξ) . . .))
︸ ︷︷ ︸

d

. (1)

Similarly, the d-erosion can be defined as:

εd(ξ) = ε(ε(. . . (ξ) . . .))
︸ ︷︷ ︸

d

. (2)



L. da F. Costa and L.E.C. da Rocha: A generalized approach to complex networks 239

Observe that δd(ξ) converges to Γ as d is increased,
while εd(ξ) converges to the empty network under similar
circumstances. We also have that δd=i+j(ξ) = δi(δj(ξ)) =
δj(δi(ξ)) and εd=i+j(ξ) = εi(εj(ξ)) = εj(εi(ξ)). The
d-degree of a subnetwork ξ is defined as the degree of
the d -dilation of the network ξ, i.e., kd(ξ) = k(δd(ξ)).
It is possible to use combinations of dilations and ero-
sions of a subnetwork ξ in order to obtain new operators
such as the opening and closing of ξ, which are defined as
α(ξ) = δ(ε(ξ)) and ω(ξ) = ε(δ(ξ)), respectively. Figures 1e
and 1g illustrate, respectively, the opening and closing of
the subnetwork ξ in a. Observe that the closing of ξ had
as an effect the connection of the two components of that
subnetwork, filling the gap between those subnetworks.
The opening and closing operations are idempotent, in
the sense that α(α(ξ)) = α(ξ) and ω(ω(ξ)) = ω(ξ). It is
also interesting to define the d-opening of a subnetwork ξ,
henceforth represented as αd(ξ), corresponding to d ero-
sions followed by d dilations. The d-closing of ξ, repre-
sented as ωd(ξ) can be defined in a similar fashion. The
latter operator is useful for investigating the progressive
merging of subnetworks of Γ in terms of increasing val-
ues of d. Particularly, interesting information about the
network structure can be provided by the evolution of the
number of connected subnetworks, starting from a specific
set χ of subnetworks (e.g. the network 3-cycles), in terms
of a sequence of d-openings (or closings) performed for
increasing values of d.

4 Distances, distance transforms, parallels
and rings

Several important features of a complex network are re-
lated to the concept of distance. If ζ and ξ are any sub-
networks of Γ , the (minimal) distance between the respec-
tive set of nodes V (ζ) and V (ξ), hence D(V (ζ), V (ξ)),
can be defined as the value of d for which some node u
of ζ becomes included into V (δd(ξ)). It can be veri-
fied that D(V (ζ), V (ξ)) = D(V (ξ), V (ζ)). Observe that
D(V (ζ), V (ζ)) = 0. In particular, the distance between a
node u and a subnetwork ξ is given as D({u}, V (ξ)). The
distance transform of a subset of nodes χ of Γ is the map-
ping which assigns D({u}, χ) to every node u ∈ V (Γ ), in-
cluding those in ξ. Figure 1g illustrate the distance trans-
form of the subnetwork in a, with the distance values
(4 values for this subnetwork, i.e. d = 0, 1, 2, and 3) ex-
pressed in terms of the nodes border widths. Given a sub-
network ξ of Γ , the subnetwork 
 defined by the set V (p)
of nodes such that D(V (
), V (ξ)) = d and the set of those
edges of Γ connecting nodes in V (
) is called the d-parallel
of ξ, henceforth represented as Pd(ξ). The parallels of the
subnetwork ξ in Figure 1a correspond to the set of nodes
with the same width in g plus the respective intercon-
necting edges. The number of nodes and edges in a d-
parallel of ξ are henceforth represented as n{Pd(ξ)} and
e{Pd(ξ)}. Similarly, it is interesting to define the rs-ring
of ξ, hence Rrs(ξ), which corresponds to the union of the
respective parallels of ξ for distances d = r to s plus

the edges of Γ interconnecting such parallels. The num-
ber of nodes and edges in a rs-ring of g are henceforth
represented as n{Rrs(ξ)} and e{Rrs(ξ)}. Observe that a
d-parallel therefore is the particular case of the rs-ring
for d = r = s. Another interesting possibility is to use
the above introduced distance concepts in order to obtain
the generalized Voronoi tessellation of subnetworks, as il-
lustrated in Figure 1h with respect to the two connected
components in the subnetwork in Figure 1a. The above
definitions allow the concept of clustering coefficient [1,4]
to be generalized to parallels and rings of any subnetwork.
The rs-clustering coefficient of a subnetwork ξ of Γ , hence-
forth represented as ccrs(ξ), can be defined as the num-
ber of edges in the respective rs-ring subnetwork, divided
by the total of possible edges between the nodes in that
ring, i.e.:

ccrs(ξ) =
2e{Rrs(ξ)}

n{Rrs(ξ)}(n{Rrs(ξ)} − 1)
. (3)

5 Hierarchical measurements for single nodes

The concepts discussed above can be naturally extended
to a single node and to an edge, respectively, whether
the subgraph contains the node alone and whether the
subgraph contains the edge and both nodes connected
by that edge [14,15]. Using the concept of rings consid-
ered in the last section, henceforth the subgraph ζ com-
posed of the ring Rd(u) is defined as the hierarchical
level related to the subgraph ξ composed of the single
node u, such that, the hierarchical number of nodes nd(u)
(or n{Rd(u)}) is given as the number of nodes at hierarchi-
cal distance d from de reference node u, i.e., the number
of nodes in the ring Rd(u). Hence, the hierarchical de-
gree kd(u) is defined as the number of edges between the
nodes in the ring Rd and Rd+1, such that the hierarchi-
cal number of edges among the nodes in the ring Rd(u)
is ed(u) (or e{Rd(u)}). The hierarchical clustering coeffi-
cient ccd(u) is written using equation 3.

ccd(u) =
2ed(u)

nd(u)(nd(u) − 1)
. (4)

At last, other hierarchical measurements can be derived
from the above definitions and each of them will be dealt
with in the following:

– Convergence ratio (Cd(u)): measures the ratio between
the hierarchical node degree of node u at hierarchical
distance d− 1 and the hierarchical number of nodes in
the ring Rd(u).

Cd(u) =
kd−1(u)
nd(u)

. (5)

– Intra-ring degree (Ad(u)): the average among the de-
grees of the nodes in the ring Rd(u).

Ad(u) =
2ed(u)
nd(u)

. (6)
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Fig. 2. (a) non-perturbed and (b) perturbed portion of a network; (c) hierarchical degrees kd(u) of the reference node in black
(© = non-perturbed case; + = perturbed version).

Table 1. Summary of the hierarchical measurements consid-
ered in this work.

Hier. number of nodes in the ring Rd(u) nd(u)

Hier. number of edges among the nodes in
the ring Rd(u)

ed(u)

Hier. degree of node u at distance d kd(u)

Hier. clust. coeff. of u at hier. level d ccd(u)

Convergence ratio of u at hier. level d Cd(u)

Intra-ring node degree of u at distance d Ad(u)

Inter-ring node degree of u at distance d Ed(u)

Hier. common degree of node u at d Hd(u)

– Inter-ring degree (Ed(u)): the average of the number
of connections between each node in ring Rd(u) and
those in Rd+1(u).

Ed(u) =
kd(u)
nd(u)

. (7)

– Hierarchical common degree (Hd(u)): the average node
degree among the nodes in Rd(u), considering all edges
connected to nodes in the ring.

Hd(u) =
2ed(u) + kd−1(u) + kd(u)

nd(u)
. (8)

A summary of these hierarchical measurements are pre-
sented in Table 1.

6 Evaluation of discriminative power

Given a complex network, it is possible to organize sev-
eral selected measurements of its topology into a feature
vector −→µ (e.g. [15]), which therefore provides a quantita-
tive description of properties of the network. Multivariate
statistical methods (e.g. [8]) can then be applied in order
to separate such vectors into clusters or to identify the
category of the network. In a similar fashion, it is possible
to assign a feature vector to individual nodes of the net-
work, so that they can be characterized and organized into
classes. Although simple measurements such as the node
degree and clustering coefficients can be used for this pur-
pose, they are generally not enough for a discriminative

characterization of nodes at the individual level because
several nodes in a large network will have identical val-
ues of such measurements. The hierarchical extensions of
the node degree and clustering coefficient, combined with
the ancillary hierarchical measurements described in this
work, account for substantially enhanced discrimination of
the local properties of the connectivity around each node,
therefore diminishing the degeneracy of the description.
In other words, several nodes may have the same imme-
diate node degree, but it is rather unlikely that they will
also share other hierarchical degrees. At the same time,
nodes which do present similar connectivity patterns along
the hierarchies can be clustered into meaningful classes by
considering feature vectors composed of hierarchical mea-
surements. In order to illustrate the above possibilities,
we considered a S. cerevisiae protein-protein interaction
network Γ [16] containing N = 1922 nodes and without
self-connections and isolated nodes. A perturbed version
of this network was obtained by randomly rewiring the
edges with probability p. More specifically, each link is
removed with probability p, in which case a new link is
established between a pair of randomly selected nodes.
Nodes in these two networks are then characterized in
terms of several combinations of the hierarchical measure-
ments discussed in this work. Figure 2 illustrates a node
and its most immediate neighborhood before a and af-
ter b perturbation of connectivity, as well as the respec-
tive hierarchical node degree signatures c. In cases such
as that illustrated in this figure, the hierarchical signature
provides a more stable characterization of the neighbor-
ing connectivity of node than would be obtained by us-
ing traditional measurements such as the node degree and
clustering coefficient.

In order to quantify the discriminative power of such
measurements, we repeatedly selected a node u from the
original network and identified among all nodes v of the
perturbed network the node which leads to the small-
est Euclidean distance between the respective measure-
ments, i.e., the distance between respective feature vec-
tors, ‖−→µu −−→µv‖, is minimal. In case these two nodes are
verified to indeed correspond one another (recall that the
identity of the nodes is guaranteed because the perturbed
network is derived from the original network by rewiring),
we understand there has been a correct identification.
Among the several combinations of measurements, con-
sidering varying hierarchical levels, the best results were
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(a) (b)

(c) (d)

Fig. 3. Four hierarchical measurements combinations for the feature vector: (a) Ad and Ed; (b) Ed and Hd; (c) Cd, Ad and Hd

and (d) Ad and Hd.

obtained for pairwise combinations of Ad, Ed, Hd and Cd,
particularly the four situations shown in Figure 3. The
diagrams in this figure depict the average ± standard de-
viation of the percentage of correctly identified nodes by
using the identified pairs of measurements up to the hi-
erarchical levels identified in the x-axis (varying from 1
to 19). A number of interesting features can be identified
from such results. First, it is interesting to notice that
the average of correct identifications undergoes the three
following regimes: (i) increases along the 4 or 5 initial hi-
erarchies; (ii) stays nearly constant until about 12 hier-
archical levels; and (iii) then decreases steadily. This be-
havior is observed for all graphs in Figure 3. The average
performance increase in (i) is a direct consequence of the
fact that more information about the network connectivity
around each node is taken into account. The performance
plateau and decrease taking place after 4 or 5 hierarchi-
cal levels are considered for the measurements reflects a
degeneration in the discriminative power of the measure-
ments caused by the fact that most of the nodes have
been considered at such hierarchical depths. Similar per-
formances are observed for the four cases illustrated in
Figure 3, with slightly better results being achieved for
the measurement combinations in a and d. The standard
deviations values tend to follow the mean, with higher
variations observed along the plateaux. It is interesting to
note that it would also be possible to consider traditional
clustering algorithms [8] in order to organize the nodes
into clusters sharing hierarchical properties.

7 Concluding remarks

This article has addressed several issues regarding the gen-
eralization of complex networks measurements. First, we
have shown for the first time that complex networks and

their properties can be formalized in terms of mathemati-
cal morphology, allowing the definition of a series of mea-
surements such as the generalized versions of the node
degree and clustering coefficient, as well as the possibil-
ity to use other features from mathematical morphology
so as to investigate further the structure of specific sub-
networks. Second, we have emphasized the importance of
identifying and studying the properties of subnetworks of
special interest — including the set of hubs, out-nodes
and 3-cycles, and shown that a particularly comprehen-
sive study of such subnetworks can be obtained by taking
into account a whole series of neighborhoods, as allowed
by the novel proposed concepts of generalized degrees and
clustering coefficient. While the new set of measurements
extended to take into account subgraphs and hierarchies
can be used to derive new network growth schemes and
characterize and classify different types of networks, they
also present power for enhanced discrimination between
individual nodes. The latter has been illustrated for the
first time in this article with respect to protein-protein in-
teraction networks. More specifically, we have shown that
the ability to identify correspondence between nodes in
two versions of a network (in the case of our example the
original and perturbed networks) tend to increase by con-
sidering measurements taking into account multiple hier-
archical levels. This is a consequence of the fact that the
use of more hierarchical levels allows the measurements
to reflect in a less degenerate way the network connectiv-
ity around each node. At the same time, we have shown
that such enhanced discriminative power tends, with the
incorporation of additional hierarchical depths, to reach a
plateau and then to decrease. The possibilities for future
works include the application of the introduced concepts
to community finding, characterization of resilience to at-
tack, and extensions to measurements aimed at character-
izing the assortative properties of networks.
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